Cadence Cookbook

Contribute

NFT with Metadata

NFT with Metadata

14 Oct 2022

Contributed by Flow Blockchain

Beginner

An NFT with metadata in it. This NFT also uses the metadata contract to establish easy views for displaying the NFT's metadata.

Smart Contract Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 /* * * This is an example implementation of a Flow Non-Fungible Token * using the V2 standard: https://github.com/onflow/flow-nft/blob/master/contracts/ExampleNFT.cdc * It is not part of the official standard but it assumed to be * similar to how many NFTs would implement the core functionality. * * This contract does not implement any sophisticated classification * system for its NFTs. It defines a simple NFT with minimal metadata. * */ import "NonFungibleToken" import "ViewResolver" import "MetadataViews" access(all) contract ExampleNFT: NonFungibleToken { /// Standard Paths access(all) let CollectionStoragePath: StoragePath access(all) let CollectionPublicPath: PublicPath /// Path where the minter should be stored /// The standard paths for the collection are stored in the collection resource type access(all) let MinterStoragePath: StoragePath /// We choose the name NFT here, but this type can have any name now /// because the interface does not require it to have a specific name any more access(all) resource NFT: NonFungibleToken.NFT { access(all) let id: UInt64 /// From the Display metadata view access(all) let name: String access(all) let description: String access(all) let thumbnail: String /// For the Royalties metadata view access(self) let royalties: [MetadataViews.Royalty] /// Generic dictionary of traits the NFT has access(self) let metadata: {String: AnyStruct} init( name: String, description: String, thumbnail: String, royalties: [MetadataViews.Royalty], metadata: {String: AnyStruct}, ) { self.id = self.uuid self.name = name self.description = description self.thumbnail = thumbnail self.royalties = royalties self.metadata = metadata } /// createEmptyCollection creates an empty Collection /// and returns it to the caller so that they can own NFTs /// @{NonFungibleToken.Collection} access(all) fun createEmptyCollection(): @{NonFungibleToken.Collection} { return <-ExampleNFT.createEmptyCollection(nftType: Type<@ExampleNFT.NFT>()) } access(all) view fun getViews(): [Type] { return [ Type<MetadataViews.Display>(), Type<MetadataViews.Royalties>(), Type<MetadataViews.Editions>(), Type<MetadataViews.ExternalURL>(), Type<MetadataViews.NFTCollectionData>(), Type<MetadataViews.NFTCollectionDisplay>(), Type<MetadataViews.Serial>(), Type<MetadataViews.Traits>(), Type<MetadataViews.EVMBridgedMetadata>() ] } access(all) fun resolveView(_ view: Type): AnyStruct? { switch view { case Type<MetadataViews.Display>(): return MetadataViews.Display( name: self.name, description: self.description, thumbnail: MetadataViews.HTTPFile( url: self.thumbnail ) ) case Type<MetadataViews.Editions>(): // There is no max number of NFTs that can be minted from this contract // so the max edition field value is set to nil let editionInfo = MetadataViews.Edition(name: "Example NFT Edition", number: self.id, max: nil) let editionList: [MetadataViews.Edition] = [editionInfo] return MetadataViews.Editions( editionList ) case Type<MetadataViews.Serial>(): return MetadataViews.Serial( self.id ) case Type<MetadataViews.Royalties>(): return MetadataViews.Royalties( self.royalties ) case Type<MetadataViews.ExternalURL>(): return MetadataViews.ExternalURL("https://example-nft.onflow.org/".concat(self.id.toString())) case Type<MetadataViews.NFTCollectionData>(): return ExampleNFT.resolveContractView(resourceType: Type<@ExampleNFT.NFT>(), viewType: Type<MetadataViews.NFTCollectionData>()) case Type<MetadataViews.NFTCollectionDisplay>(): return ExampleNFT.resolveContractView(resourceType: Type<@ExampleNFT.NFT>(), viewType: Type<MetadataViews.NFTCollectionDisplay>()) case Type<MetadataViews.Traits>(): // exclude mintedTime and foo to show other uses of Traits let excludedTraits = ["mintedTime", "foo"] let traitsView = MetadataViews.dictToTraits(dict: self.metadata, excludedNames: excludedTraits) // mintedTime is a unix timestamp, we should mark it with a displayType so platforms know how to show it. if let mintedTime = self.metadata["mintedTime"] as? String { let mintedTimeTrait = MetadataViews.Trait(name: "mintedTime", value: mintedTime, displayType: "Date", rarity: nil) traitsView.addTrait(mintedTimeTrait) } // foo is a trait with its own rarity let fooTraitRarity = MetadataViews.Rarity(score: 10.0, max: 100.0, description: "Common") let fooTrait = MetadataViews.Trait(name: "foo", value: self.metadata["foo"], displayType: nil, rarity: fooTraitRarity) traitsView.addTrait(fooTrait) return traitsView case Type<MetadataViews.EVMBridgedMetadata>(): // Implementing this view gives the project control over how the bridged NFT is represented as an // ERC721 when bridged to EVM on Flow via the public infrastructure bridge. // Get the contract-level name and symbol values let contractLevel = ExampleNFT.resolveContractView( resourceType: nil, viewType: Type<MetadataViews.EVMBridgedMetadata>() ) as! MetadataViews.EVMBridgedMetadata? if let contractMetadata = contractLevel { // Compose the token-level URI based on a base URI and the token ID, pointing to a JSON file. This // would be a file you've uploaded and are hosting somewhere - in this case HTTP, but this could be // IPFS, S3, a data URL containing the JSON directly, etc. let baseURI = "https://example-nft.onflow.org/token-metadata/" let uriValue = self.id.toString().concat(".json") return MetadataViews.EVMBridgedMetadata( name: contractMetadata.name, symbol: contractMetadata.symbol, uri: MetadataViews.URI( baseURI: baseURI, // defining baseURI results in a concatenation of baseURI and value value: self.id.toString().concat(".json") ) ) } else { return nil } } return nil } } // Deprecated: Only here for backward compatibility. access(all) resource interface ExampleNFTCollectionPublic {} access(all) resource Collection: NonFungibleToken.Collection, ExampleNFTCollectionPublic { /// dictionary of NFT conforming tokens /// NFT is a resource type with an `UInt64` ID field access(all) var ownedNFTs: @{UInt64: {NonFungibleToken.NFT}} init () { self.ownedNFTs <- {} } /// getSupportedNFTTypes returns a list of NFT types that this receiver accepts access(all) view fun getSupportedNFTTypes(): {Type: Bool} { let supportedTypes: {Type: Bool} = {} supportedTypes[Type<@ExampleNFT.NFT>()] = true return supportedTypes } /// Returns whether or not the given type is accepted by the collection /// A collection that can accept any type should just return true by default access(all) view fun isSupportedNFTType(type: Type): Bool { return type == Type<@ExampleNFT.NFT>() } /// withdraw removes an NFT from the collection and moves it to the caller access(NonFungibleToken.Withdraw) fun withdraw(withdrawID: UInt64): @{NonFungibleToken.NFT} { let token <- self.ownedNFTs.remove(key: withdrawID) ?? panic("ExampleNFT.Collection.withdraw: Could not withdraw an NFT with ID " .concat(withdrawID.toString()) .concat(". Check the submitted ID to make sure it is one that this collection owns.")) return <-token } /// deposit takes a NFT and adds it to the collections dictionary /// and adds the ID to the id array access(all) fun deposit(token: @{NonFungibleToken.NFT}) { let token <- token as! @ExampleNFT.NFT let id = token.id // add the new token to the dictionary which removes the old one let oldToken <- self.ownedNFTs[token.id] <- token destroy oldToken // This code is for testing purposes only // Do not add to your contract unless you have a specific // reason to want to emit the NFTUpdated event somewhere // in your contract let authTokenRef = (&self.ownedNFTs[id] as auth(NonFungibleToken.Update) &{NonFungibleToken.NFT}?)! //authTokenRef.updateTransferDate(date: getCurrentBlock().timestamp) ExampleNFT.emitNFTUpdated(authTokenRef) } /// getIDs returns an array of the IDs that are in the collection access(all) view fun getIDs(): [UInt64] { return self.ownedNFTs.keys } /// Gets the amount of NFTs stored in the collection access(all) view fun getLength(): Int { return self.ownedNFTs.length } access(all) view fun borrowNFT(_ id: UInt64): &{NonFungibleToken.NFT}? { return &self.ownedNFTs[id] } /// Borrow the view resolver for the specified NFT ID access(all) view fun borrowViewResolver(id: UInt64): &{ViewResolver.Resolver}? { if let nft = &self.ownedNFTs[id] as &{NonFungibleToken.NFT}? { return nft as &{ViewResolver.Resolver} } return nil } /// createEmptyCollection creates an empty Collection of the same type /// and returns it to the caller /// @return A an empty collection of the same type access(all) fun createEmptyCollection(): @{NonFungibleToken.Collection} { return <-ExampleNFT.createEmptyCollection(nftType: Type<@ExampleNFT.NFT>()) } } /// createEmptyCollection creates an empty Collection for the specified NFT type /// and returns it to the caller so that they can own NFTs access(all) fun createEmptyCollection(nftType: Type): @{NonFungibleToken.Collection} { return <- create Collection() } /// Function that returns all the Metadata Views implemented by a Non Fungible Token /// /// @return An array of Types defining the implemented views. This value will be used by /// developers to know which parameter to pass to the resolveView() method. /// access(all) view fun getContractViews(resourceType: Type?): [Type] { return [ Type<MetadataViews.NFTCollectionData>(), Type<MetadataViews.NFTCollectionDisplay>(), Type<MetadataViews.EVMBridgedMetadata>() ] } /// Function that resolves a metadata view for this contract. /// /// @param view: The Type of the desired view. /// @return A structure representing the requested view. /// access(all) fun resolveContractView(resourceType: Type?, viewType: Type): AnyStruct? { switch viewType { case Type<MetadataViews.NFTCollectionData>(): let collectionData = MetadataViews.NFTCollectionData( storagePath: self.CollectionStoragePath, publicPath: self.CollectionPublicPath, publicCollection: Type<&ExampleNFT.Collection>(), publicLinkedType: Type<&ExampleNFT.Collection>(), createEmptyCollectionFunction: (fun(): @{NonFungibleToken.Collection} { return <-ExampleNFT.createEmptyCollection(nftType: Type<@ExampleNFT.NFT>()) }) ) return collectionData case Type<MetadataViews.NFTCollectionDisplay>(): let media = MetadataViews.Media( file: MetadataViews.HTTPFile( url: "https://assets.website-files.com/5f6294c0c7a8cdd643b1c820/5f6294c0c7a8cda55cb1c936_Flow_Wordmark.svg" ), mediaType: "image/svg+xml" ) return MetadataViews.NFTCollectionDisplay( name: "The Example Collection", description: "This collection is used as an example to help you develop your next Flow NFT.", externalURL: MetadataViews.ExternalURL("https://example-nft.onflow.org"), squareImage: media, bannerImage: media, socials: { "twitter": MetadataViews.ExternalURL("https://twitter.com/flow_blockchain") } ) case Type<MetadataViews.EVMBridgedMetadata>(): // Implementing this view gives the project control over how the bridged NFT is represented as an ERC721 // when bridged to EVM on Flow via the public infrastructure bridge. // Compose the contract-level URI. In this case, the contract metadata is located on some HTTP host, // but it could be IPFS, S3, a data URL containing the JSON directly, etc. return MetadataViews.EVMBridgedMetadata( name: "ExampleNFT", symbol: "XMPL", uri: MetadataViews.URI( baseURI: nil, // setting baseURI as nil sets the given value as the uri field value value: "https://example-nft.onflow.org/contract-metadata.json" ) ) } return nil } /// Resource that an admin or something similar would own to be /// able to mint new NFTs /// access(all) resource NFTMinter { /// mintNFT mints a new NFT with a new ID /// and returns it to the calling context access(all) fun mintNFT( name: String, description: String, thumbnail: String, royalties: [MetadataViews.Royalty], metadata: {String: String}, ): @ExampleNFT.NFT { //let metadata: {String: AnyStruct} = {} let currentBlock = getCurrentBlock() // create a new NFT var newNFT <- create NFT( name: name, description: description, thumbnail: thumbnail, royalties: royalties, metadata: metadata, ) return <-newNFT } } init() { // Set the named paths self.CollectionStoragePath = /storage/exampleNFTCollection self.CollectionPublicPath = /public/exampleNFTCollection self.MinterStoragePath = /storage/exampleNFTMinter // Create a Collection resource and save it to storage let collection <- create Collection() self.account.storage.save(<-collection, to: self.CollectionStoragePath) // create a public capability for the collection let collectionCap = self.account.capabilities.storage.issue<&ExampleNFT.Collection>(self.CollectionStoragePath) self.account.capabilities.publish(collectionCap, at: self.CollectionPublicPath) // Create a Minter resource and save it to storage let minter: @ExampleNFT.NFTMinter <- create NFTMinter() self.account.storage.save(<-minter, to: self.MinterStoragePath) } }

This contract defines an NFT resource that fully complies with both the Flow NFT standard and the Metadata standard. The NFT resource includes metadata fields such as id, name, thumbnail, description, power, will, and determination, which are all initialized during the resource's creation.

To facilitate access to this metadata, the contract includes a resolveView function that retrieves specific views based on client requests and a getViews function that lists all the supported views. These functions streamline the process of retrieving and displaying metadata, ensuring that the NFT's information can be easily accessed and used by external applications.

Transaction Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 import "MetadataViews" import "ExampleNFT" transaction { prepare(signer: auth(Storage, Capabilities) &Account) { // Use the caller's address let address: Address = signer.address // Borrow the NFTMinter from the caller's storage let minter = signer.storage.borrow<&ExampleNFT.NFTMinter>( from: /storage/exampleNFTMinter ) ?? panic("Could not borrow the NFT minter reference.") // Mint a new NFT with metadata let nft <- minter.mintNFT( name: "Example NFT", description: "Minting a sample NFT", thumbnail: "https://example.com/thumbnail.png", royalties: [], metadata: { "Power": "100", "Will": "Strong", "Determination": "Unyielding" }, ) // Borrow the collection from the caller's storage let collection = signer.storage.borrow<&ExampleNFT.Collection>( from: /storage/exampleNFTCollection ) ?? panic("Could not borrow the NFT collection reference.") // Deposit the newly minted NFT into the caller's collection collection.deposit(token: <-nft) } }

Since the smart contract requires metadata to be initialized for each NFT, the minting transaction must include these metadata parameters. This ensures that every NFT created is properly defined with the necessary information.

n the transaction, we first borrow the NFTMinter resource from the account's storage that holds it. Then, we verify that the recipient's account has the capability to store NFTs by checking their collection. If the capability is missing, the transaction will fail to prevent the NFT from being lost.

Finally, we mint the NFT by calling the mintNFT function on the NFTMinter, passing in the required metadata parameters (such as name, description, thumbnail, and custom attributes). Once minted, the NFT is deposited into the recipient's collection, completing the process securely and ensuring that the NFT is properly stored in the intended account.


ProgressNFT Fundamentals

Up Next: Metadata Views

67%


Related Recipes

14 Oct 2022
Mint NFT
Beginner
14 Oct 2022
Collection for Holding NFTs
Beginner
01 Apr 2022
Metadata Views
Beginner